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Abstract
Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly

in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle

spin.

Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the

nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of

freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman split-

ting. We elucidate charge and spin transport by comparison to theoretical models.

Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in

superconductor nanostructures.

180

Introduction
The investigation of spin-polarized transport in hybrid struc-

tures was pioneered in the 1970s with the discovery of spin-

dependent tunneling into thin-film superconductors with a large

Zeeman splitting by Tedrow and Meservey [1,2]. While much

of the related basic physics such as tunneling magnetoresis-

tance (TMR) [3] and non-equilibrium spin injection [4] was

observed subsequently, spin-polarized transport did not attract

much attention until the discovery of the giant magnetoresis-

tance (GMR) [5-7] and its technical applications.

In superconductors, electrons are bound in Cooper pairs, which

usually have a singlet structure and therefore carry only charge
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Figure 2: (a) Nonlocal conductance of one contact pair of an NISIN sample with d = 1 μm as a function of the injector bias Vinj for different magnetic
fields B. (b) Charge imbalance relaxation length . Data taken from [12], the lines are various model predictions explained in the text.

but no spin. The quasiparticle excitations, however, may carry

both charge and spin. Non-equilibrium charge transport in

superconductors has been investigated intensely in the 1970s

and 1980s, mostly in the vicinity of the critical temperature

[8-10] and more recently also in the low-temperature regime

[11-13]. In contrast, only few experiments on quasiparticle spin

transport [14] have been reported, and the subject remains

poorly understood. For example, both anomalously short [15]

and anomalously long [16] spin relaxation times have been

reported in superconducting aluminum.

In this paper, we summarize some of our recent experimental

results on non-equilibrium charge and spin transport in

nanoscale superconductors [12,17,18], and perform additional

numerical analysis to obtain more insight into the physical

mechanisms.

Results and Discussion
Figure 1 shows a typical sample layout and measurement

scheme. A central superconducting aluminum wire is contacted

by several normal-metal (copper) or ferromagnetic (iron) elec-

trodes attached via thin tunnel barriers. A dc bias voltage Vinj

with a small superimposed low-frequency ac excitation is

applied to one junction (injector), and the resulting current Iinj

flowing into the junction is measured to determine the local

differential conductance gloc = dIinj/dVinj. Simultaneously, the

current Idet flowing out of a nearby detector junction is

measured to obtain the nonlocal conductance gnl = dIdet/dVinj.

The nonlocal conductance was measured for different contact

distances d, and different material combinations, for which both

injector and detector could be either normal (N) or ferromag-

netic (F). These configurations will be labeled by AISIB, where

A and B denote the injector and detector contacts, respectively.

Two examples (NISIN and NISIF) are indicated in Figure 1.

The measurements were carried out in a dilution refrigerator at

temperatures down to about 50 mK, and with a magnetic field B

applied along the substrate plane parallel to the copper or iron

wires. The thickness of the aluminum films was tAl =

12–30 nm, and for the thinnest films, critical fields exceeding

2 T were observed.

Figure 1: False color scanning electron microscopy image of one of
our samples, together with the measurement scheme. The samples
consist of a central superconducting wire (S), with normal-metal (N)
and/or ferromagnetic (F) wires attached to it via tunnel contacts [18].

Before we discuss the spin signal observed by using ferromag-

netic detector junctions, we analyze the charge imbalance signal

observed in an NISIN configuration. The aluminum film thick-

ness of this sample was tAl = 30 nm, with a critical field

Bc = 0.53 T. Here, the effect of the applied field is mostly

orbital pair breaking, and the Zeeman splitting of the density of

states does not play a significant role. In Figure 2a, we show the

nonlocal conductance gnl of a pair of contacts at low tempera-

ture and for bias voltages above the energy gap Δ ≈ 200 μeV of

the superconductor. By fitting gnl at a given bias voltage for
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different contact distances to an exponential decay, we can

obtain a bias-dependent charge relaxation length  (see [12]

for details). The corresponding results are shown in Figure 2b.

Since we are interested here mostly in the behavior at finite

magnetic fields, where Green’s function methods are most

appropriate, we model the data with the linearized kinetic equa-

tion derived by Schmid et al. [19]. A simple analytical approxi-

mation that neglects the cooling of the quasiparticles (see

Supporting Information File 1) yields the charge-imbalance

relaxation length at low temperature

(1)

where N1 is the density of states in the superconductor, N2 is the

real part of the anomalous Green’s function,  is

the dirty-limit coherence length, and DN is the normal-state

diffusion coefficient. The nonlocal conductance due to charge

imbalance within the same approximation is

(2)

where  is the derivative of the Fermi function, ρN is the

normal-state resistivity of the superconductor, and  is the

cross-section area of the superconducting wire.

In Figure 2, we compare the model predictions to the experi-

mental data. We proceeded by first fitting  at finite

magnetic fields with the simple “no-cooling” approximation

Equation 1. Here, we assume that the pair-breaking strength

follows the relation ζ = (B/Bc)2/2 for a magnetic field applied

parallel to a thin film, and use the diffusion coefficient DN as

the single free fit parameter for all curves. These fits are shown

as dotted lines in Figure 2b. As can be seen, a good fit can be

made for the initial slope of the data, and we obtain

DN = 70 cm2/s from the fit, a value somewhat larger than the

independent estimate (40 cm2/s) from the resistivity. Without

additional fitting, we can then plot the predictions for the

nonlocal conductance according to Equation 2 in Figure 2a. For

large bias, the experimental data (both gnl and ) deviate

downward from the fits. Full numerical simulations that include

cooling, with the characteristic inelastic scattering time τE as the

only remaining fit parameter, are shown as solid lines in

Figure 2. Excellent agreement with the experimental data for

 can be achieved for τE = 12 ns. The agreement for the

nonlocal conductance is not as good as for , but still satis-

factory. We finally attempted to fit the data at zero field, i.e., for

ζ = 0. The predictions exceeded the experimental data by about

a factor of two, both for gnl and  (not shown). We attribute

this discrepancy to the fact that at zero applied field, any small

additional source of pair breaking, such as gap anisotropy,

magnetic impurities, spatial profile of the gap due to quasipar-

ticle injection, etc., may contribute to charge relaxation [20]. A

reasonable fit (dashed lines) could be obtained by setting

ζ = 8 × 10−4 to account for all these pair-breaking perturbations.

At zero field, we find a relaxation length of a few micrometers,

which corresponds to characteristic time scales of a few

nanoseconds. Recently, some experiments reported shorter time

scales (sometimes by orders of magnitude) under similar condi-

tions [21,22]. In contrast, our results are quantitatively consis-

tent with the “old” knowledge obtained from experiments close

to the critical temperature [23-25], as well as more recent low-

temperature experiments on the spatial decay of charge imbal-

ance in thin wires [11,13]. Both experimentally and theoretic-

ally, we find that the charge relaxation length decreases with

increasing magnetic field, and is smallest at energies just above

the gap. This is the parameter range where the spin signal is

observed by the ferromagnetic detectors described below. Also,

in this parameter regime we can use the analytical “no-cooling”

approximation (Equation 2) to describe the charge imbalance.

In Figure 3 we compare the nonlocal conductance for an FISIN

(a) and NISIF (b) configuration, while using the same pair of

contacts, but reversing the roles of injector and detector. We

plot here the normalized nonlocal conductance  = gnl/

GinjGdet, where Ginj and Gdet are the normal-state conductances

of the injector and detector junctions, respectively. In the FISIN

configuration, the nonlocal conductance is negligible at bias

voltages below the gap. At bias voltages above the gap, the

signal initially increases almost linearly, and then the slope

decreases except for the highest magnetic fields. The signal is

an even function of the bias and can be attributed to charge

imbalance, as described above, since the normal-metal detector

is not sensitive to spin accumulation. The lines are fits to Equa-

tion 2.

For the NISIF configuration, shown in Figure 3b, a similar

signal is observed at B = 0. Upon increasing the field, however,

two additional peaks appear near the gap edge, with opposite

sign for opposite bias polarity. These features can be attributed

to spin injection into the Zeeman-split density of states of the

superconductor [17,18,22,26], which is probed by the ferromag-

netic detector in this configuration. Spin-polarized tunneling

can be described by two independent conductances g↓ and g↑

for the two spin orientations. The conductance is then given by

the sum g↓ + g↑, whereas the spin current is proportional to the
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Figure 3: Normalized nonlocal conductance of one contact pair in an FISIN (a) and NISIF (b) configuration as a function of Vinj for different magnetic
fields B. Symbols are experimental data [18], lines are fits explained in the text.

Figure 4: Charge relaxation length  at a bias voltage of about 2Δ (a) and spin diffusion length λS (b) for different samples as a function of normal-
ized magnetic field B/Bc. The samples have different number of ferromagnetic (F) and normal-metal (N) contacts, as indicated in the legend. Symbols
are experimental data [17,18], lines are fits explained in the text.

difference g↓ − g↑. The lines in Figure 3b are the sum of the

charge-imbalance contribution shown in Figure 3a and an addi-

tional contribution  to account for the spin

signal. For the latter, we use parameters that we obtained from

fits of the local conductance of the injector junctions, which

leaves only the overall signal amplitude as a free fit parameter.

As can be seen, the reasonable fit can be obtained over the

entire bias range.

In Figure 4, we compare the lengths of charge and spin relax-

ation of several samples with similar properties of the

aluminum film as a function of the normalized magnetic field

B/Bc. The samples have different numbers of ferromagnetic and

normal-metal junctions, as indicated in the figure. In Figure 4a,

we plot the charge relaxation length  obtained at a bias

voltage of about 2Δ, for which  is usually largest at zero

field (compare Figure 2).  is typically a few micrometers at

zero field, and then quickly drops. The lines are fits to

Equation 1. The spin relaxation length λS is found by fitting the

area A of the spin-signal peaks as a function of contact distance

to an exponential decay [17,18]. At small fields, λS is similar to

, but then strongly increases with increasing field. At

present, no theoretical model for high-field spin diffusion and

relaxation in superconductors is available, therefore only a

tentative interpretation is possible. The normal-state spin diffu-

sion length in the samples is typically less than 500 nm, which

means a tenfold increase in the superconducting state. A

possible relaxation mechanism could be a two-stage process of

spin-flip scattering and recombination, which has been consid-

ered theoretically in a different context [27,28]. A generaliza-

tion of existing models for the non-equilibrium transport in

superconductors [19,29] to the case of large Zeeman splitting,

treating both charge and spin degrees of freedom on an equal

footing, would be highly desirable.
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Figure 5: Spin relaxation length λS (a) and amplitude A of the spin signal (b) for different samples as a function of the temperature T. Symbols are
experimental data [17,18], lines are fits explained in the text.

Figure 5 shows the evolution of the spin relaxation length λS

and the amplitude A of the spin signal as a function of the

temperature. λS is independent of the temperature within the

accuracy of the experiment, similar to  in the same tempera-

ture range [12]. In contrast, the signal amplitude decreases with

increasing temperature. The spin-injection rate proportional to

g↓ − g↑ inferred from the local conductance does not change

appreciably in this temperature range, except for thermal broad-

ening, which should not affect the overall peak area A. Thus,

since neither injection nor relaxation cause the signal change,

the decrease of signal amplitude must be related to the detec-

tion process. A simple model based on the tunnel Hamiltonian

yields [17]

(3)

where S is the net spin accumulation, fσ(E) is the quasiparticle

distribution for spin σ in the superconductor, and f0 denotes the

Fermi distribution in the ferromagnetic detector junction. As

can be seen, the detector signal is proportional to the difference

of the distribution functions in the superconductor and ferro-

magnet. The former is determined by spin injection, whereas

the latter can be assumed to be (nearly) at equilibrium at the

bath temperature. Therefore, we can expect the spin signal to

decrease as the bath temperature is raised. A very simple model

to describe this drop can be obtained by assuming that non-

equilibrium injection raises the effective temperature of the

quasiparticles inside the superconductor to about 1 K, as we

have found in similar structures with normal-metal junctions

[30], and that most quasiparticles have an energy close to the

energy gap Eg, which is typically around 0.5–0.75 × Δ0 at the

fields of the experiments. Then, the spin signal should be

proportional to f0(Eg, 1 K) − f0(Eg, T). Fits to this model are

shown in Figure 5b. As can be seen, the agreement is quite

good, despite the oversimplification of the model. We note that,

usually, the current through an NIS junction does not depend on

the temperature of the normal metal due to particle–hole

symmetry. This is no longer true if a spin-dependent density of

states in the superconductor is combined with a spin-dependent

tunnel conductance, as it is the case in our experiment. For this

case, large thermoelectric effects driven by the temperature

difference between superconductor and ferromagnet have been

predicted recently [31,32].

Conclusion
We have presented an analysis of our recent experiments on

spin and charge transport in nanoscale superconductors at very

low temperatures and high magnetic fields. We find that charge

imbalance can be described surprisingly well with existing

models, despite the fact that they were initially developed for

experiments close to the critical temperature. Charge relaxation

is very fast at energies just above the gap. This is the bias

regime, in which we observe long-range spin transport in the

presence of a Zeeman splitting of the density of states. By

comparing the relaxation lengths for charge and spin, we can

conclude that spin currents in this regime are nearly chargeless.

While no detailed model of spin transport and relaxation is

available yet, we find that simple models based on the tunnel

Hamiltonian explain the dependence of spin injection and detec-

tion on bias, magnetic field and temperature. The ability to

create and transport pure spin currents in superconductors may

be useful for future superconducting spintronics devices.

Further, our analysis of the temperature dependence hints at the

importance of new thermoelectric effects in nanoscale super-

conductor-ferromagnet hybrids.
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Supporting Information
Supporting Information File 1
Details of the theoretical model.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-5-18-S1.pdf]
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